Monthly Archives: June, 2013

The Morning Edition (June 28, 2013)

Clip art illustration of a Cartoon Tiger with a Missing Tooth

 

From Last Night:

  • Holland pitches a 2 hit shutout against the Yanks
  • Boston unloads on the Jays, hang on to win 7-4
  • Byrd’s 8th inning HR lifts the Mets
  • Strasburg and Corbin pitch well, but an 11th inning hit from Gregorious beats the Nats
  • Garza dominates the Brewers
  • Kluber gets shelled

What I’m Watching Today:

  • Cole looks to keep the Pirates hot (7p Eastern)
  • Matt Harvey faces the Nationals, strikeouts in the forecast (7p Eastern)
  • James Shields attempts to further discredit “wins” as a statistics (8p Eastern)
  • Miller heads to Oakland to matchup with Colon (10p Eastern)
  • Iwakuma welcomes the Cubs to Safeco (10p Eastern)

The Big Question:

  • Is this finally the year for the Pirates?

As I write this, the Pirates are tied for the best record in baseball and could play pretty terrible baseball the rest of the way and still finish above .500. They’ve had great first halves the last two seasons and faded during the dog days, but they probably have what it takes to hang in this. On this day last season, they were 39-35, this year they are 48-30. That’s a lot better. But the offense is 19th in baseball in wRC+ and the starting pitching is 20th in WAR with the bullpen at 19th. They have the 5th best defense by UZR, which helps suppress the ERA and win games. I’m not sure I’m buying them as a playoff team just yet, but I’m pretty confident they are good enough not to lose more than half their games.

How Was The Game? (June 27, 2013)

Clip art illustration of a Cartoon Tiger with a Missing Tooth

 

An opposite way to lose.

Angels 3, Tigers 1

After a homestand that featured the league’s best starting pitching doing a very convincing Padres impersonation, Doug Fister (6-5, 103 IP, 3.50 ERA, 2.82 FIP, 2.9 WAR) returned to form, pitching 7 brilliant innings of 1 run baseball to give the Tigers a very good chance to salvage one in the series. However, the Tigers could only must a single run themselves against the nameless opposing starter and couldn’t cash in on scoring chances in the 8th and 9th innings. With a taxed bullpen, Leyland had to hand the ball to Coke in the 10th, who remained unable to get righties out, resulting in two runs. The Tigers have the best staff and the best offense in baseball, but it wasn’t lined up correctly on this homestand as they dropped 3 straight to the Angels and 6 of 10 overall. They will pack up and head to TB tonight, turning to Max Scherzer (11-0, 103.1 IP, 3.05 ERA, 2.54 FIP, 3.3 WAR) for game one with the Rays.

The Moment: Torii Hunter nearly injures himself during a very comical dive.

The Morning Edition (June 27, 2013)

Clip art illustration of a Cartoon Tiger with a Missing Tooth

 

From Last Night:

  • Marcum goes 8 scoreless to beat the Sox
  • Gordon walks off on the Braves
  • Kazmir flirts with a no-hitter, but it took a Johnson blown save to win it
  • Zimmermann leads the Nats over the Dbacks
  • Lackey dominates the Rockies
  • Felix strikes out 11, gives up 2 ER, somehow doesn’t win…
  • AJ Griffin CGSO
  • Dickey CGSO

What I’m Watching Today:

  • Corbin and Strasburg in DC (4p Eastern)
  • NERD favorite Kluber in Baltimore (7p Eastern)
  • Greinke faces the Phillies, hopes not to get in a fight (10p Eastern)

The Big Question:

  • Didn’t 2B used to be a glove first position?

We live in a world in which Robinson Cano is 5th among 2B in WAR this season. Carpenter and Kipnis are taking the league by storm and Pedroia and Kendrick are ahead of him too. Cano is 7th among qualifiers in wRC+ for 2B. When did this happen? I remember just a couple seasons back you had like two second basemen who could hit and everyone else was Ramon Santiago. The game is changing, it’s pretty cool. Here’s Dave Cameron writing on a similar subject a little ways back.

How Was The Game? (June 26, 2013)

Clip art illustration of a Cartoon Tiger with a Missing Tooth

One that slowly slipped away.

Angels 7, Tigers 4

The Tigers got off to a good start with back to back homeruns from Hunter and Cabrera in the first inning, but Jose Alvarez (1-1, 16.2 IP, 3.78 ERA, 5.69 FIP, -0.1 WAR) allowed the equalizing homer to Trout in the 3rd inning. The Tigers came back with a run in the bottom half of the inning, but Leyland gave Alvarez a little too much leash as he was tiring in the 6th inning and he allowed a go-ahead homerun from Erick Aybar before being pulled after 5.2 innings and 4 runs. Smyly, unfortunately, surrendered 3 runs of his own even though he has been one of the better relievers in all of baseball this year. (New English D’s new SOEFA rankings put him at 5th entering the day!) After last night’s ugly one, this one was a more subtle defeat, but they count the same in the standings. They’ll try and salvage one on Thursday behind Doug Fister (6-5, 96 IP, 3.66 ERA, 2.86 FIP, 2.7 WAR) to make it a 5-5 homestand and avoid the season sweep at the hands of the Angels and he who shall not be named.

The Moment: Hunter and Cabrera go back to back to start the game.

A New Way To Measure Relief Pitchers: SOEFA

Clip art illustration of a Cartoon Tiger with a Missing Tooth

I’ve long been a critic of the save statistic, and I don’t need to rehash why it’s the scourge of the baseball world, but relief pitching is still an important part of the game and we often struggle to properly measure it. Won/Loss record and saves tell you nothing about a player’s individual skill, especially not relievers, and even things like ERA don’t do a lot of good because relievers aren’t charged for runners they let in belonging to another pitcher and can get charged with runs allowed by the pitchers who come after.

Strikeouts, walks, and homeruns allowed (the basis of FIP) are good measurements, but FIP inherently strips away context. And context does matter for relief pitchers. It’s an elite reliever’s job to come in and strand runners, so strikeouts are good and homeruns are bad, but sequencing is really important and it matters a lot when they get outs and when they allow baserunners.

In a sense, FIP and similar statistics are good, but they aren’t perfect because they’re context neutral and we might want some context in reliever stats. Win Probability Added (WPA) is a typical way to fix this, but this feels too context dependent for me. WAR is always a nice combination of these kinds of measures, but WAR is a counting stat so how much a reliever is used matters a lot, and relievers are often used incorrectly.

My point here is not that I can come up with something better, but rather that I want to try to add something. I always look at reliever stats and find logical holes more often than with position players and starters. I want a reliever stat that measures context, considers the peripheral numbers, and also understands the luck involved. I didn’t find one out there that satisfied me, so I went to work inventing one.

I’ll say this. This isn’t perfect and I want to improve it. Flaws you may find in the method should not cause you to discount it, but rather to add to the discussion. This is a first crack. I hope you find it useful.

The Goal

So first, I started with a question: What is the job of a relief pitcher? Here was my answer:

  1. Strand runners
  2. Don’t allow baserunners
  3. If you allow baserunners, don’t let them score.

With that outlined, I went to work thinking about how to measure each and came up with the following statistic that I will call SOEFA, pronounced like “sofa.” It stands for Strand On-base ERA FIP Average and should be thought of as a way to measure relievers from your sofa. Yes, I have a whimsical side.

It has four components, let’s walk through them.

The Formula

First is Strand Rate+, which I calculated as what percent better or worse a reliever is from league average at stranding runners. League average is 70%, so if you strand 100% of your inherited runners, your Strand Rate+ is .43 because you are 43% better than league average.

Second, is your Expected OBP+ or xOBP+ which is your opponents on base percentage calculated as a percentage deviation from league average just like SR+, except that I regress your hits allowed based on league average BABIP because sometimes batters get lucky hits.

Third, is my version or ERA+, which is just like normal ERA- except I scale mine to zero instead of 100 like the major stat sites and invert it. Same principles regarding deviation from average applies. FIP+ is exactly the same, except I use FIP-. These numbers are park adjusted.

To combine them, I add SR+ to xOBP+ and then add ERA+ to get eSOEFA. I then repeat the same process and replace ERA+ with FIP+ to get fSOEFA. A pitcher’s SOEFA score is the average between the two.

The output gives you a number that sets league average at zero and ranges technically from negative infinity to about 2.5, but generally speaking you won’t see a reliever fall below -2.5. Basically it’s a -3 to 3 scale that puts good relievers on the plus side and bad ones on the negative side.

Additionally, at my discretion, relievers who have inherited fewer than five baserunners during the season (this number will likely be fluid based on where we are in the season) are given a league average SR+ so that if you don’t ever inherit runners you aren’t unfairly punished because you are not given sufficient opportunity to strand them or you are not given credit for an awesome strand rate if you strand the only runner you inherit.

I’m pretty happy with the first round of results. The first run of results came from stats entering June 25th and it generally lines up with my impression of the best performing relief pitchers in baseball. I have no idea if this stat is predictive or how long it takes to stabilize. Right now, it correlates with ERA and FIP at -.73 and -.75 despite the fact that each is only 1/6 of the input and the R squared is around .6 using it to predict FIP, if those kinds of things interest you.

It’s experimental. It’s meant to be fun and maybe helpful.

A word of note is that Fangraphs and B-R seem to use different cutoffs for which relievers “qualify,” so this output may be missing a few relievers. I’m sorry about that. The great thing about this statistic is that I can easily produce the number for any reliever in baseball in less than two minutes. If you want to know how a reliever measures up or how a reliever did during a given season, just ask and I can provide the number based on a handy program I wrote. Hit me on Twitter @NeilWeinberg44 and I’d be happy to provide the SOEFA for any reliever.

Thanks for reading and I welcome any feedback. Who knows, maybe this will work.

Below are the SOEFA for the vast majority of qualifying relievers up through 6/24/13. If you want to know the SOEFA of a reliever not on this list or would like an update score, please let me know.

Rank Player Team SOEFA
1 Sergio Romo Giants 0.99
2 Jason Grilli Pirates 0.95
3 Junichi Tazawa Red Sox 0.92
4 Kevin Gregg Cubs 0.92
5 Drew Smyly Tigers 0.9
6 Joaquin Benoit Tigers 0.89
7 Jordan Walden Braves 0.88
8 Robbie Ross Rangers 0.87
9 Mark Melancon Pirates 0.85
10 Jesse Crain White Sox 0.83
11 Edward Mujica Cardinals 0.79
12 Brett Cecil Blue Jays 0.79
13 Greg Holland Royals 0.75
14 Oliver Perez Mariners 0.74
15 Trevor Rosenthal Cardinals 0.74
16 Kenley Jansen Dodgers 0.72
17 Glen Perkins Twins 0.71
18 Koji Uehara Red Sox 0.7
19 Preston Claiborne Yankees 0.69
20 Sam LeCure Reds 0.68
21 Casey Janssen Blue Jays 0.64
22 Mariano Rivera Yankees 0.63
23 Luke Gregerson Padres 0.62
24 Craig Kimbrel Braves 0.62
25 Sean Doolittle Athletics 0.6
26 Edgmer Escalona Rockies 0.56
27 Tommy Hunter Orioles 0.56
28 Brad Ziegler Diamondbacks 0.54
29 Joe Nathan Rangers 0.53
30 Joe Smith Indians 0.53
31 Vin Mazzaro Pirates 0.51
32 Jim Henderson Brewers 0.5
33 James Russell Cubs 0.49
34 Casey Fien Twins 0.48
35 Tim Collins Royals 0.47
36 Shawn Kelley Yankees 0.47
37 Brian Matusz Orioles 0.46
38 Addison Reed White Sox 0.46
39 Tanner Scheppers Rangers 0.45
40 Rafael Soriano Nationals 0.44
41 Aroldis Chapman Reds 0.44
42 Joel Peralta Rays 0.43
43 Matt Reynolds Diamondbacks 0.43
44 Brandon Kintzler Brewers 0.43
45 Ryan Cook Athletics 0.42
46 Chad Qualls Marlins 0.42
47 Cody Allen Indians 0.4
48 Andrew Miller Red Sox 0.4
49 David Robertson Yankees 0.38
50 Seth Maness Cardinals 0.36
51 Bobby Parnell Mets 0.36
52 Matt Belisle Rockies 0.36
53 Josh Outman Rockies 0.36
54 Rex Brothers Rockies 0.35
55 Jonathan Papelbon Phillies 0.35
56 Dale Thayer Padres 0.35
57 Darren O’Day Orioles 0.33
58 Justin Wilson Pirates 0.33
59 Luke Hochevar Royals 0.31
60 Grant Balfour Athletics 0.3
61 John Axford Brewers 0.29
62 Ernesto Frieri Angels 0.29
63 Drew Storen Nationals 0.27
64 Bryan Shaw Indians 0.26
65 Nate Jones White Sox 0.26
66 Luis Avilan Braves 0.25
67 Anthony Varvaro Braves 0.25
68 Anthony Swarzak Twins 0.24
69 Paco Rodriguez Dodgers 0.24
70 Jean Machi Giants 0.2
71 Tyler Clippard Nationals 0.19
72 Matt Thornton White Sox 0.19
73 Steve Delabar Blue Jays 0.18
74 Craig Stammen Nationals 0.17
75 Tony Watson Pirates 0.17
76 Pat Neshek Athletics 0.16
77 Jamey Wright Rays 0.16
78 J.P. Howell Dodgers 0.16
79 Cesar Ramos Rays 0.15
80 Alfredo Simon Reds 0.15
81 Troy Patton Orioles 0.15
82 Matt Lindstrom White Sox 0.14
83 Jim Johnson Orioles 0.12
84 Carter Capps Mariners 0.11
85 Ryan Pressly Twins 0.11
86 Steve Cishek Marlins 0.11
87 Darin Downs Tigers 0.1
88 Antonio Bastardo Phillies 0.09
89 Charlie Furbush Mariners 0.07
90 Brian Duensing Twins 0.07
91 Yoervis Medina Mariners 0.07
92 Jerry Blevins Athletics 0.07
93 Tom Gorzelanny Brewers 0.06
94 Jared Burton Twins 0.05
95 Jose Veras Astros 0.05
96 Joe Kelly Cardinals 0.05
97 David Hernandez Diamondbacks 0.04
98 Ryan Webb Marlins 0.04
99 Aaron Loup Blue Jays 0.03
100 Wesley Wright Astros 0.01
101 Bryan Morris Pirates 0.01
102 Burke Badenhop Brewers 0
103 Dane de la Rosa Angels -0.02
104 Adam Ottavino Rockies -0.04
105 LaTroy Hawkins Mets -0.04
106 Cory Gearrin Braves -0.06
107 Joe Ortiz Rangers -0.08
108 Wilton Lopez Rockies -0.08
109 Brandon Lyon Mets -0.08
110 J.J. Hoover Reds -0.08
111 Mike Dunn Marlins -0.09
112 Fernando Rodney Rays -0.1
113 Hector Ambriz Astros -0.1
114 Paul Clemens Astros -0.13
115 Tom Wilhelmsen Mariners -0.13
116 Matt Guerrier Dodgers -0.13
117 Josh Roenicke Twins -0.17
118 Jose Mijares Giants -0.21
119 Michael Gonzalez Brewers -0.23
120 Jonathan Broxton Reds -0.25
121 Jake McGee Rays -0.25
122 Matt Albers Indians -0.26
123 A.J. Ramos Marlins -0.26
124 Scott Rice Mets -0.29
125 Nick Hagadone Indians -0.31
126 Travis Blackley Astros -0.33
127 Vinnie Pestano Indians -0.34
128 George Kontos Giants -0.35
129 Mike Adams Phillies -0.39
130 Clayton Mortensen Red Sox -0.4
131 Garrett Richards Angels -0.43
132 Heath Bell Diamondbacks -0.46
133 Esmil Rogers Blue Jays -0.5
134 Ronald Belisario Dodgers -0.51
135 Jeremy Affeldt Giants -0.55
136 Brandon League Dodgers -0.55
137 Jeremy Horst Phillies -0.58
138 Kelvin Herrera Royals -0.67
139 Carlos Marmol Cubs -0.72
140 Huston Street Padres -0.82
141 Anthony Bass Padres -0.94
142 Hector Rondon Cubs -1.24

 

Stat(s) of the Week: Defensive Runs Saved and Ultimate Zone Rating

Clip art illustration of a Cartoon Tiger with a Missing Tooth

Since I’ve twice written above defense in the last week, it’s high time I actually explain these defensive stats. Luckily, this is quite easy to explain and understand. There are two primary defensive metrics that people use. Defensive Runs Saved (DRS) and Ultimate Zone Rating (UZR), which are based on people watching video of every play and computer algorithms.

You can learn exactly how each is calculate here, DRS and UZR. But you don’t need to know how to calculate them in order to understand what they mean. It’s important to learn about these because Fielding % is problematic stat because it doesn’t factor in a player’s range, so you can have a good fielding percentage if you don’t make errors because you never get to difficult balls. We need numbers that measure how good players are at preventing runs and avoiding errors isn’t the only way to do that.

The numbers are scaled to position, so league average at every position is zero and positive numbers are good and negative numbers are bad.

For example a player with a +5 DRS or +5 UZR is five runs better than league average at their position. 10 runs is equal to 1 Win Above Replacement (WAR). These are counting stats, so you accumulate them as the season goes on, although I believe they are only updated weekly on the more popular statistics websites.

You can use either DRS or UZR depending on your preference, but Baseball Reference uses DRS in their WAR and Fangraphs uses UZR in theirs. It’s a preference thing. I always use Fangraphs WAR on this site, but I interchange the defensive stats on occasion because I don’t really have a favorite. If there is no label on this site, it is UZR.

Additionally, you might see UZR/150, which is simply UZR scaled into a full season of games as if you played at your current pace for a whole season.

As a rule of thumb, 0 is average, -5/+5 is above or below average, -10/+10 is poor or great, -15/+15 is awful or elite. It is also important to know that these statistics take a while to become predictive, so small samples can cause problems with defensive numbers but they generally all a good description of what has happened, even if it doesn’t predict what will happen next.

Dynamic Standings Projection (June 26, 2013)

In case you missed it, in April we launched our Dynamic Standings Projection feature on New English D. A full explanation of the methodology can be found here or by clicking the tab at the top of the page. This project seeks to provide a reasoned and cautious approach to updating our beliefs about the baseball future. You can find a summarization of the original projections here. You’ll notice a column on the far right that indicates the difference in projected wins from the preseason prediction. Positive numbers mean teams are now projected to win more games and negative numbers mean a team is now projected to win fewer games. You’ll notice a series of graphs below the standings section that track how the projections have evolved over the course of the year.

This Dynamic Standings Projection is updated through the June 25 games.

26-Jun W L PreDiff
TB 88 74 0.543 -3
NYY 87 75 0.537 2
BAL 86 76 0.531 4
BOS 85 77 0.525 8
TOR 84 78 0.519 -3
W L PreDiff
DET 92 70 0.568 -2
CWS 77 85 0.475 -6
CLE 77 85 0.475 6
KC 76 86 0.469 0
MIN 70 92 0.432 5
W L PreDiff
TEX 92 70 0.568 1
OAK 88 74 0.543 4
LAA 80 82 0.494 -8
SEA 73 89 0.451 -2
HOU 60 102 0.370 0
W L PreDiff
ATL 92 70 0.568 2
WSH 88 74 0.543 -7
PHI 81 81 0.500 -3
NYM 73 89 0.451 -5
MIA 59 103 0.364 -4
W L PreDiff
STL 94 68 0.580 6
CIN 93 69 0.574 1
PIT 90 72 0.556 8
MIL 74 88 0.457 -5
CHC 68 94 0.420 0
W L PreDiff
SF 86 76 0.531 -5
ARZ 85 77 0.525 3
LAD 81 81 0.500 -7
SD 79 83 0.488 1
COL 72 90 0.444 9

pic1 pic2 pic3

pic4

pic5 pic6

The Morning Edition (June 26, 2013)

Clip art illustration of a Cartoon Tiger with a Missing Tooth

From Last Night:

  • Chris Sale went 8, gave up 2 ER, had 13 K and left with the lead. He didn’t get the win. The guy who blew the save did.
  • Matt Moore does a Matt Moore impression with 11 K and 6 BB, wins
  • The Red Sox score 11 without a HR
  • Ichiro walks off as Darvish and Kuroda are ordinary
  • Casilla hit as many homeruns as Chris Davis, 1 each

What I’m Watching Today:

  • Felix faces the Pirates (330p Eastern)
  • Zimmermann takes the hill (7p Eastern)
  • Cole Hamels against the Padres (10p Eastern)
  • Kershaw and Lincecum (10p Eastern)

The Big Question:

  • Come on guys, can we leave Chris Sale alone?

Seriously, I want to discredit the win stat too, but can it not keep happening to the same guy. But. BUT! Let’s play a game regarding Astros pitcher Erik Bedard. Let’s explore his ERA and FIP by month:

pic1

He’s getting a lot better each month. This is good news. I bet he’s striking out more batters than he was at the beginning of the season.

pic2

Oh. Well. I bet he’s walking fewer people!

pic3

Well he is, but he’s still walking and awful lot of people. Hmmm, this is tricky. Maybe it’s because he is allowing fewer homeruns?

pic4

Yeah, that’s probably it. Sorry, Bedard this probably isn’t sustainable!

How Was The Game? (June 25, 2013)

Clip art illustration of a Cartoon Tiger with a Missing Tooth

Just dreadful.

Angels 14, Tigers 8

So I’m a believer in the theory, it might be my own, that there is exactly one game per season that isn’t fun. This was that game. Usually, I find enjoyment in the game even if it’s  a loss, heartbreaking or otherwise. For example, the last time Porcello played the Angels, it was fun to watch Smyly dominate out of the pen. Tonight, I can’t think of anything worth celebrating. Rick Porcello (4-5, 80.1 IP, 5.15 ERA, 3.64 FIP, 1.3 WAR) did not pitch as poorly as the line indicates as a lot of groundballs found holes, but he wasn’t terribly sharp either after the first five batters. The offense had three nice outbursts, I suppose and actually scored a lot of runs, but they ruined that by making, I’m not kidding you, six errors. They made six errors. That’s like two weeks worth of errors. If you missed this game, don’t go look at the box score, I’ll spare you. Forget it happened. It’s done. It’s a loss, nothing more. We’ll wipe the slate clean and try again with Jose Alvarez (1-0, 11 IP, 2.45 ERA, 4.68 FIP, 0.1 WAR) on the mound Wednesday.

The Moment: Um…Cabrera hit a homerun.

Andy Dirks’ Inverted Value: Trading Offense for Defense

pic1

Andy Dirks has been slumping with the bat lately. A lot of Tigers fans are unhappy with his performance lately and want to see more from the now-injured Tuiasosopo, Garcia, and Castellanos. I get that, I understand. The offensive numbers are down. You can see it in his rate stats from last year to this season:

pic2

He’s 100 PA shy of where he was last season (344 to 244), so the counting stats are going to be harder to compare, but something is incredibly interesting about Dirks this season. Last year, he was worth 1.6 WAR in 344 PA. This year he’s at 1.4 WAR in 244 PA. So he’s actually a little ahead of last year’s overall value despite being 100 PA behind and being a worse player across the board offensively.

Andy Dirks went from an above average hitter and below average defender last season to an elite fielder and below average hitter this season. Now, it could be a sample size issue. Certainly it could. But the change is pretty dramatic and pretty interesting in terms of where his value is coming from, so let’s just take a look with the caveat that this might not keep up.

If we take a look at this advanced defensive numbers, multiple measures line up. Defensive Runs Saved (DRS) and Ultimate Zone Rating (UZR) agree that Dirks was slightly below average/right around average in 2012 and way above average in 2013.

pic3

So Dirks’ bat is down and his defense is way up. If we look at where he is contributing runs to his team it has completely shifted (keep in mind replacement level and positional adjustments change a little year to year) from the bat to the glove (10 runs equals 1 WAR). Batting runs, fielding runs, and total runs above replacement look like this:

pic4

Basically, the takeaway point here is that while Dirks is struggling at the plate this season, he has made up for it with huge defensive value. I’ve watched almost every inning of Tigers baseball this year and I’m comfortable with the directional change, even if you want to quibble over his precise defensive numbers. Dirks has been great on defense especially compared to most guys who play left field.

Consider this, by UZR/150 which is essentially how many runs a player saves on defense per 150 games, Andy Dirks in LF is baseball’s best qualifying defender. His UZR/150 this year is 34.9. That’s like being a 3.5 WAR player just on defense. Granted, he’ll regress a little over time, but that is an elite level to this point. He’s the best defensive player in baseball by this measure! He’s 2nd in UZR (which isn’t scaled to a full season) and 8th in DRS. (These are all broken down by position and player so guys who play many different positions are unfairly knocked down)

So while I understand that fans are concerned about Dirks’ offensive performance you have to consider his defense as part of his overall value. That’s why Wins Above Replacement (WAR) is such a useful tool. It places a run value on everything and converts those runs into wins. I don’t care how a player adds value, I care if they add value. Dirks is adding value on defense instead of at the plate, and we can’t just ignore that.

Half of a player’s job is playing defense, even if it isn’t as sexy. And Andy Dirks is playing great defense.

pic1

%d bloggers like this: